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Abstract-The laminar natural convection flow along a corner of an arbitrary angle formed by two vertical 
Rat plates with uniform surface heat flux is considered. For large modified Grashof numbers, the leading 
order corner layer equations and appropriate boundary conditions are formulated in an oblique coordinate 
system using the method of matched asymptotic expansions. The analysis is valid mathematically for any 
corner angle. 0’ < a, < 360”. The velocity and temperature distributions for Prdndtl numbers 0.733 (air) 
and 6.7 (water) are obtained using the ADI-type finite difference technique for corner angles ranging from 
90‘ to 270 The general features of the solutions are similar to those with isothermal wall conditions except 

for the temperature proliles in the vicinity of the corner. 

1. INTRODUCTION 

As A FUNDAMENTAL problem of three-dimensional 
boundary layer flows, the high Reynolds number flow 
along a corner formed by two quarter-infinite flat 
plates with co-planar leading edges has been analyzed 
by several authors [l-6] since the work by Carrier [I]. 
On the other hand, the heat transfer characteristics of 
three-dimensional corner flows have been studied only 
recently: the natural convection near a concave ver- 
tical corner submerged in a saturated porous medium 
[7], the forced convective heat transfer in the flow 
along a corner of an arbitrary angle 181, the natural 
convection near a vertical rectangular corner with 
uniform surface temperature [9] or uniform surface 
heat flux [lo], and the natural convection near an 
isothermal vertical corner of an arbitrary angle [I I]. 

In the present paper, as a generalization of the 
earlier work [IO], the laminar free convection near a 
vertical corner of an arbitrary angle with uniform 
stirface heat flux is considered. For large modified 
Grashof numbers, the corner layer equations and the 
appropriate boundary conditions are derived by a 
method (based on the method of matched asymp- 
totic expansions) similar to that used in refs. [6, I I]. 
For the numerical solution, an alternative direction 
implicit (ADI) scheme is employed, and results for 
corners of angles ranging from 90” to 270” are pre- 
sented for Prandtl numbers of 0.733 (air) and 6.7 
(water). 

2. CORNER LAYER EQUATIONS 

We consider the laminar natural convection bound- 
ary layer flow near a corner formed by the intersection 
of two vertical quarter-infinite planes with uniform 
surface heat flux. The problem is formulated in an 

oblique coordinate system (.uO, JJ~. z”). where the s,,- 
axis is vertically upward and the origin at the leading 
edge. Both ?I,,- and ;“- axes are perpendicular to the 
.u,-axis and lie, respectively, in the symmetry plane 
and in one of the joining quarter-infinite plates (Fig. 
I). The coordinates are simply related to the Cartesian 
coordinate system (x. J’, :) by 

(.u,,y,,~,) = (.~,?i--tana,z/coscc). (1) 

Considering the following symmetry properties along 
the corner bisector (y,-axis), it is sufficient to analyze 
the flow in the half region z0 > 0 

zf*(.K,y,z) = u*(x,y, -:) 

v*(x,y,z) = u*(x,y, -2) 

n’*(.K,y,z) = -w*(x,y, -z) 

T(x,y. z) = T(x,y, -z). (2) 

Employing the Boussinesq approximation and 
neglecting the viscous dissipation, the governing equa- 
tions in the oblique coordinate system are 

au; au; ihg z+-+a-=0 
” ah Lo 

DliZ 1 asi -= -- 
Df - +vV*‘u:+.@(T-T,) (3b) 

P ax, 

1 36 
n$ sin tl) = - - - + ~V**(u~_t MJ; sin a) 

P ah 
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Dt 
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NOMENCLATURE 

u = 0.2, grid spacing parameter (I, convective velocity, (v/.u0)(Gr*/5)’ 5 
Gr* local modified Grashof number, -yo, j-0, --0 oblique coordinate system defined 

sPw:/kv’ in Fig. 1 
k thermal conductivity of fluid x, y, z Cartesian coordinate system. 
N, S transformed independent variables 
NM local Nusselt number Greek symbols 
Pt pressure in x0, y,, z,, coordinate system u = 1 (n-u,) 
P pressure in 5, II, c coordinate system UC corner angle 
Pr Prandtl number, V/K B thermal expansion coefficient 
Yw surface heat flux 1’ = lim,,- I I-41‘(v)] 
r magnitude of crossflow velocity, 0 dimensionless temperature 

(Gr*/5)“5(v*‘+~~~*2)‘i2/Uu K thermal diffusivity 
T temperature P dynamic viscosity 
T, ambient temperature 1’ kinematic viscosity, p/p 
AT temperature difference, T,-- T, 5, r~, { scaled independent variables 
u;, v;, wQ velocity components in x0, yo, z. P density of fluid 

directions TW wall shear stress 
u*, v*, w* velocity components in x, y, z 5 w 7 wall shear stress as [ --* cc 

directions 4, II/ velocity potentials defined in equation (6) 
u, D, M’ velocity components in 5, rj, [ n modified vorticity function defined in 

directions equation (6). 

where 

In order to obtain the leading order corner layer 
equations, we introduce the following corner layer 
variables [IO] : 

where Gr* and U, denote, respectively, the modified 
Grashof number and the convective velocity 

Under the assumption that the modified Grashof 
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number Gr* is sufficiently large, we obtain the fol- r’ = 1’ + lt’sin tl. I? = n*+psina 
lowing corner layer equations, by substituting equa- 
tions (4) into equations (3) and retaining the leading 
order terms in each equation 

O?= 1 
( 

(q? 

cosIs( iq- 
2sinaT+?t 

sryaj ty? > 

- f (‘pl,, + ill; -3U) +P4 + M’; = 0 (54 Eliminating the pressure term in equations (5~) and 

- 5 (‘lu,, + Qq - 324) + uu, + w1l; = 0 ‘u+ 50 

(5d) by cross differentiation and introducing ‘the vel- 
ocity potentials’ C#J and tj and ‘the modified vorticity’ 

(5b) R 

u 
- j (r/l;*, + ifi; + 1’) + 1q + WLS; = -p,, + 5/ ‘fi (5c) 

4 = (y -,>,os,. 4 = (g -,,‘),,,., 

(Se) 

(6) 

where 
we have following Poisson-type equations for the flow 
in the corner layer : 

(a) 

\ 0 Kim &Klm(io) 
u=1.2 

1 /’ 

a,=270° 

FIG. 2. Streamwise isovels for uc = 90” and 270” : (a) Pr = 0.733 ; (b) Pr = 6.7. 
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%=270’ 1 

lb) 

v~u+~u,+~ui-~cosuu~+5ecosa = 0 

V’R+~R,,+~R~+u[Rcosu 

+~((a+5sina)~,-~~(r+rlsin~~)u~] 

+([+gsinGI)O,-((q+[sincf)OC = 0 

4?, -$,,i sin a + 4<; + $n sin U 

+Rccos2a-uqCOSu = 0 

I/f,, - ~,i sin a + $(; + bq9 sin a 

--Rqcos’a-uicosa = 0 

~v~o+~e,+~ei- y.0 = 0 (7) 

where 

It is observed that the comer layer equations (7) are 
similar to those for the isothermal case [I I]. , 

5 

3. BOUNDARY CONDITIONS 

Since the comer layer equations are elliptic, the 
boundary conditions must be specified on the entire 
boundaries, i.e. 4 = 0, [ = 0, v -P M and i --t W. 

3.1. Cond~fioss on the wall, ye = 0 
On the wall, no-slip and uniform heat flux con- 

ditions are to be satisfied 

elr = -cosa. (8) 

3.2. Conditions on the symmetry plane, ( =,O 
By noting symmetry properties (2), the conditions 

on the symmetry plane are given as 

u(-u,,sina = 0, n=*=o, 

&--(@,--Ijli)sina = 0, &-8,sina = 0. (9) 
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u - u,(rl)+u,(tl)li+ ‘.. 

- Kim & Kim (10) 
Q - iQ,(rl)+fi,(rl)+ ‘.. 

4 - 4o(rl)+4,hYi+ '.. 

Substituting equations (I 1) into equations (7) and 

1.5- 

l- 

u 

EKtm &Klm(lO) 

FIG. 3. Streamwise velocity profiles in the symmetry plane 
for various corner angles : (a) Pr = 0.733 ; (b) Pr = 6.7. 

3.3. Conditions as 9 + 00 
As q + co, the corner layer approaches the inner 

edge of the outer inviscid isothermal region. In the 
same manner as in ref. [I 11, the conditions as q -+ 03 
are shown to be 

u-o, R-0, #J- -ycosa, $-0, e-o 
(10) 

where y is a constant to be determined by the matching 
with the value of 4 as c --? 03. 

3.4. Conditions as ( + co 
The far-field boundary conditions as [ + w can be 

obtained by matching the comer layer to the bound- 
ary layer. Considering the results for the rectangular 
comer [lo], the following formal asymptotic expan- 
sions are seen to be adequate for the present problem 
[4, 6, 1 I] : 

solving the resulting equation up to the second order, 
we obtain the appropriate matching conditions for 
the corner layer variables 

u - 5f’h) 

R - [f”(r7)/cos a+3f’(a) tan a+@, (a)/cos a 

4 - 4.f(tl) cos a 

$ - U’(a) cos a + IL, 01) 

0 - t(o). (12) 
Here f(q) and t(q) are the well-known solutions for 

(4 

J 

t 

symmetry plane $ $ 

$ + 
$ 

f I I I I I 
0 

3 i-/cosa 
6 

FIG. 4. Magnitudes and directions of crossflow for a, = 90” 
and 270” : (a) Pr = 0.733 ; (b) Pr = 6.7. 
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(b) 

*symmetry plane 

0 3 6 
#xs (I 

FIG. 4-Continued. 

the natural convection flow on a semi-infinite vertical 
flat plate with uniform surface heat flux, i.e. 

/“‘(rf)+4f(rj)/“(rf) cos2a-3[f’(q)]2 cos?a 

+ t(q) cos? a = 0 

t~(rl)+Prcos2c([4f(~)t’(~) -f'(rlMv)l = 0 
f(0) =f'(O) = 0, f'(0) 

= -cosa and J’(a) = [(co) =0 (13) 

and the equation for $,(q) is given by 

Icll(O) = 0, ti,(a) = 0 (14) 

where 

h(t) = [4J"(f-5f')+9(f')'+<t'/2-1/2] sin2a. 

The value of y in equation (10) can now be determined 

5- 

4- ~Klm&Klm(lO) 

2.5- 

(b) 
0 1.5 3 6 7.5 

FIG. 5. Crossflow profiles in the symmetry plane for various 
corner angles : (a) Pr = 0.733 ; (b) Pr = 6.7. 

by requiring that 4 of equation (IO) be equal to that 
of equation (12) as 9 + co 

4. METHOD OF SOLUTION 

The corner layer problem described in the previous 
section is to be solved in the infinite region 0 < q, 
< < 03. As seen from equations (12), corner layer vari- 
ables n and $ become unbounded as c + 03. For 
computational purposes, it is convenient to introduce 
new variables 0 and $ instead of R and $ 

si = n-[f(q)/cosa, 6 = vQ-42-‘(~)COS~ (15) 

and transform the infinite region 0 < 1. [ < co into a 
finite computational domain 0 < N, S < I [ 121 

N=L!!!- 4 
1 +aq’ 

SC-- 
l+aC (16) 
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where a is a grid-spacing parameter. Transformation 
(16) is expected to give the improved accuracy of the 
numerical solution since grid points are concentrated 
near the corner region where large gradients are 
expected. 

The corner layer equations and the boundary con- 
ditions are rewritten in terms of the new defined vari- 
ables and are solved by the alternate direction implicit 
(ADI) scheme used in refs. [9-l I]. 

5. RESULTS AND DISCUSSION 

Numerical results are obtained for five corner 
angles ranging from 90” to 270” for two different 
Prandtl numbers, 0.733 and 6.7. In order to assess the 
accuracy of the numerical procedures, including the 
effect of the obliqueness of the coordinate system, the 
results for the rectangular corner are compared with 
those of Kim and Kim [IO]. Both results show satis- 
factory agreement. 

Figure 2 illustrates the streamwise isovels for 

a, = 90” and a, = 270”. The general trends are much 
the same as those for isothermal wall conditions [I I]. 
For a 90” corner (generally for corner angles 
a, < 180”), closed contours of streamwise isovels 
appear in the vicinity of the symmetry plane near 
the corner. The maximum value of u occurs on the 
symmetry plane and is greater than that of the asymp- 
totic two-dimensional value as [ + co. On the other 
hand, for a 270” corner (for corner angles a, > 180”), 
the maximum value of the streamwise velocity is 
smaller than the corresponding two-dimensional one 
and no closed contour appears. The thickness of the 
velocity boundary layer for a, < 180” (a, > 180.) 
attains its maximum (minimum) at the symmetry 
plane and becomes thinner (thicker) as [ increases and 
ultimately approaches its asymptotic two-dimensional 
value. In Fig. 3, the streamwise velocity profiles in the 
symmetry plane are shown for various corner angles. 
The velocity boundary layer thickness as measured in 
the symmetry plane and the maximum value of u 
increase as the corner angle is decreased. As compared 

(4 

B Kim & Kim (10) 

I I I I I 
0 1.5 3 

</COS4,.5 

6 

FIG. 6. Isotherms for a, = 90” and 270” : (a) Pr = 0.733 ; (b) Pr = 6.7 
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0 Kim & Kim(l0) 

Rc. bConhnued. 

with the isothermal case, for isoflux walls the 
maximum streamwise velocity in the symmetry plane 
is larger for a, < 180” and smaller for a, > 180”. 

Figure 4 depicts the isolines of the scaled magnitude 
r and the direction of the crossflow for cc, = 90” and 
a, = 270”. The crossflow patterns are similar to those 
for isothermal walls: for CL, = 90” (generally for 
a, < 180”), the crossflow is converging almost radially 
towards the corner, while for a, = 270” (generally for 
a, > 180”) the fluid in the vicinity of the symmetry 
plane approaches the comer and the fluid near the 
wall diverges outwards. Profiles of crossflow velocity 
u in the symmetry plane are shown in Fig. 5 for various 
corner angles. For LX, < 180”, near the corner the mag- 
nitude as well as the rate of change of crossflow is 
larger than that for the isothermal case. Taking into 
consideration the equation of continuity, this 
behavior of crossflow distributions results in a larger 
variation of streamwise velocity distributions than 
that for uniform temperature walls. 

and vice versa for a, > 180”. Figure 7 shows the tem- 
perature profiles in the symmetry plane for various 
corner angles. It is observed that the maximum tem- 
perature in the symmetry plane is larger for smaller 
corner angles and decreases rapidly as a, increases, 
and that the thickness of the thermal boundary layer 
as measured in the symmetry plane decreases as the 
comer angle increases. As compared with the iso- 
thermal case, the temperature gradient in the sym- 
metry plane in larger (smaller) for the isoflux case 
when a, < 180” (a, > 180”). 

Figure 8 illustrates the local Nusselt number Nu 
defined by 

I &* ‘15 
N”=8(o, 5 ( > (17) 

The isothermal lines for a, = 90” and 270” are 
depicted in Fig. 6. The surface temperature for 
a, < 180” has a maximum value at the corner and 
decreases monotonically to its asymptotic two-dimen- 
sional value as the distance from the vertex increases. 

which shows that Nu is inversely proportional to the 
surface temperature 0(0, [). The local Nusselt number 
Nu for a, > 180” (a, < 180”) has a larger maximum 
(smaller minimum) value at the corner for larger 
(smaller) corner angles and monotonically decreases 
(increases) to its asymptotic two-dimensional values 
as [ increases. Comparison of the curves illustrated in 

-7. Fig. 8 shows that the smaller comer angle and the 
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FIG. 7. Temperature profiles in the symmetry plane for vari- 
ous corner angles : (a) f’r = 0.733 ; (b) Pr = 6.7. 

larger Prandtl number result in a more rapid approach 
to the two-dimensional value as [ increases. 

Figure 9 shows the distributions of the local shear 
stress given approximately by, neglecting the effect of 
the crossflow. 

Tw _ Q-l I) twm 
cos a f”(0) 

(18) 

where t,, is the corresponding asymptotic two- 
dimensional value of rW 

The qualitative behavior of ~~ with the variation of 
the corner angle is the same as that for isothermal 
wall conditions : for ac < 180”, 7w is zero at the corner 

1 I I 4 I 
1.5 3 4.5 6 7.5 
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(b)  o I I I I 
1.5 3 f 415 6 7.5 

FIG. 8. Local Nusselt number distributions for variouscomer 
angles : (a) Pr = 0.733 ; (b) Pr = 6.7. 

and attains the maximum value at a certain distance 
from the vertex and then decreases to its asymptotic 
two-dimensional value as [ increases, and, for 
a, > 180”, rW decreases from a large value at the corner 
to its minimum and then increases to the two-dimen- 
sional value. The magnitude of overshoot (under- 
shoot) becomes larger for greater 1 I[ - a, 1. 

The results given in Figs. 2-9 indicate that the quali- 
tative features of fluid motion and heat transfer near 
the corner are entirely different depending on whether 
a, > 180” or a, < 180”. As compared with the iso- 
thermal case, for a, < 180”, the streamwise velocity 
and the wall shear stress distributions near the corner 
show greater variations for the isoflux case, since near 
the corner the temperature varies more rapidly for the 
latter case and the buoyancy force becomes enhanced. 
the trend being more pronounced for lower Prandtl 
number. 



1250 M. H. KIM er al. 

7.5 

6 : 

7.5 1 

4.5-. 

LL f"(O) 
P Yes 

3- 

(a) 

5. 

6. 

7. 

1.5 1 , , , , , 

0 1.5 3 { 4.5 6 7.5 

6 

(b) o’ I I I I 
1.5 3 t 4.5 6 7.5 

FIG. 9. Local shear stress distributions for various corner angles: (a) Pr = 0.733 : (b) Pr = 6.7 

REFERENCES 

G. F. Carrier. The boundary layer in a corner, Quur/. 
Appl. Ma/h. 12, 3677370 ( 1946). 
K. Sewartson. viscous flow past a quarter infinite plate, 
J. Arro. SC;. 28. l-10 (1961). 
S. G. Rubin. Incompressible flow along a corner, J. Fluid 
Med. 26,97- I IO ( 1966). 
A. Pal and S. G. Rubin. Asymptotic features of viscous 
flow along a corner, Quar/. Appl. Ma/h. 29, 91-108 
(1971). 
K. N. Ghia, Incompressible streamwise flow along an 
unbounded corner. AIAA J. 13,902-907 (1975). 
W. H. Barclay and A. H. Ridha. Flow in streamwise 
corners of arbitrary angle. AIAA J. 18, 1413-1420 
(1980). 
C. Y. Liu and A. C. Guerra, Free convection in a porous 
medium near the corner of arbitrary angle formed by 

8. 

9. 

IO. 

I I. 

12. 

two vertical plates. hr. Conmn~n. Heat Mass Trun.c:fer 
12,431440 (1985). 
M. H. Kim. M.-U. Kim and D. H. Choi, Forced con- 
vective heat transfer in the flow along a corner of arbi- 
trary angle, Meclr. Res. Conmwn. 15, 269-274 (1988). 
M. H. Kim and M.-U. Kim, Natural convection near a 
rectangular corner, hr. J. Heur Mass Trunsfer 31, l357- 
1364 (1988). 
M. H. Kim and M.-U. Kim, Natural convection near a 
rectangular corner formed by two-vertical flat plates with 
uniform surface heat flux, It7r. J. Heal Mass Trun$v 
32, 1239-1246 (1989). 
M. H. Kim, M.-U. Kim and D. H. Choi, Natural con- 

vection near a vertical corner of an arbitrary angle. Irrr. 
J. Hear Mass Transfer 34, 1327-1336 (1991). 
J. A. Sills, Transformations for infinite regions and their 
application to flow problems, AIAA J. 7, 117-123 (1969). 


